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Miniaturization and high-throughput screening are currently the focus of emerging research areas such as
systems biology and systems biotechnology. A fluorescence-based screening assay for the online monitoring of
oxygen and pH and a numerical method to mine the resulting online process data are described. The assay
employs commercial phosphorescent oxygen- and pH-sensitive probes in standard 48- or 96-well plates on a
plate reader equipped with a shaker. In addition to dual parametric analysis of both pH and oxygen in a single
well, the assay allows monitoring of growth, as measured by absorbance. Validation of the assay is presented
and compared with commercially available plates equipped with optical sensors for oxygen and pH. By using
model-free fitting to the readily available online measurements, the length and rate of each phase such as the
duration of lag and transition phase or acidification, growth, and oxygen consumption rates are automatically
detected. In total, nine physiological descriptors, which can be used for further statistical and comparison
analysis, are extracted from the pH, oxygen partial pressure (pO2), and optical density (OD) profiles. The
combination of a simple mix-and-measure procedure with an automatic data mining method allows high
sample throughput and good reproducibility while providing a physiological state identification and charac-
terization of test cells. As a proof of concept, the utility of the workflow in assessing the physiological response
of Escherichia coli to environmental and genetic perturbations is demonstrated.

The availability of high-throughput (HT) and high-informa-
tion-content screening procedures is one of the technical pre-
requisites for enhanced development of therapeutic drugs, new
biological products, and growth media or strain improvement
through metabolic engineering or directed evolution. HT op-
eration can be easily accomplished on a small scale in dispos-
able multiwell plates. Unfortunately, plates are often not
equipped to accurately and continuously provide data about
the status of the cultivation. Such data are nevertheless critical
in assessing the physiological behavior of the cells for better
understanding cellular processes and adaptation to environ-
mental or genetic perturbations. Biomolecular components
such as enzymes, DNA, RNA, and intra- and extracellular
metabolites are undoubtedly the most informative variables to
provide a mechanistic understanding of the physiological status
of cells. Regrettably, such variables are typically available only
via offline measurements, and samplings in plates interfere
strongly with the cultivation by further reducing the volume. In
contrast to the offline parameters that are measured periodi-
cally, many online parameters such as oxygen partial pres-
sure (pO2), pH, and biomass are measured noninvasively
and continuously with respect to the time scale of the pro-
duction cycle. In addition, these major physiological param-
eters provide information on cellular metabolism. For in-

stances, the trend of pH values may be a qualitative
indicator of phenomena such as organic acid production or
consumption (50) and the course of pO2 may point out
substrate or oxygen limitations, product inhibitions, or di-
auxic growth (2). For these reasons, online measurements
are favorable for small-scale process monitoring.

The development of fluorescence-based sensing technolo-
gies provides an attractive solution to enable small-scale pro-
cess monitoring. The approach relies on the use of fluorescent
probes sensitive to oxygen or pH. Optical oxygen sensing is
based on fluorescence quenching by molecular oxygen, while
pH sensing is based on the interdependence of optical prop-
erties with respect to the equilibrium between the acidic and
basic forms of a reagent resulting from pH changes in the
medium. These, in turn, may be monitored by changes in
fluorescence intensity. Using solid-state sensors, 96-well plates
that are capable of detecting biological oxygen consumption or
extracellular acidification or basification have been successfully
applied to the analysis of a variety of bacteria, mammalian
cells, and fungi (3, 13, 30). Each sensor allows the measure-
ment of one parameter—either pH or O2—and is provided as
a patch occupying the entire bottom of wells in 96-well plates.
Such a design prevents the measurement of cell growth via
optical density (OD), as well as the parallel measurement of
pH and O2. Dual devices containing two sensors, one for pH
and one for O2, are currently available in 24- and 96-well
plates, allowing simultaneous optical monitoring of oxygen and
pH during bacterial or mammalian cell cultivation (17, 35, 38)
(SXF-96 analyzer; Seahorse Bioscience). Fully integrated sys-
tems using multiwell plates and measuring simultaneously a
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third parameter such as growth (34), CO2 (SXF-24_3 analyzer;
Seahorse Bioscience), or temperature (28) have also been re-
ported. These two latter systems can suffer from certain limi-
tations, including cost and the requirement for dedicated in-
strumentation (i.e., reader and plate). More recently, the
development of water-soluble probes that can be dispensed
directly into samples has overcome many of these limitations
and allows the dual measurement of oxygen and pH and the
use of plates with several formats (i.e., from 6- to 384-well
plates). Examples using dispensable water-soluble probes in
physiological samples include extracellular assessment of oxy-
gen and/or pH (24–26, 36, 43) and measurement of intracel-
lular pH (9, 49) in eukaryotic and bacterial cells. The most
frequently used indicators are 8-hydroxypyrene-1,3,6-trisulfo-
nic acid sodium salt (HPTS), carbxyfluorescein derivatives
(e.g., mono- and dichlorocarboxyfluorescein), and semina-
phthorhodafluor (SNARF) for pH measurement and ruthe-
nium complexes and platinum (or palladium)-porphyrins for
oxygen assessment (3).

While fluorescence-based technologies can provide real on-
line data about cultivation, these measurements do not give
direct information on the physiological status of cells (52).
Indeed, online parameters are often recorded every few min-
utes for cultivation periods that can last from a few days to a
couple of weeks, resulting in large data sets. Further, online
data are quite heterogeneous in time scales and data types.
Finally, noise due to the instrument limitation may be present
in the raw online measurement (10). In order to capture the
key physiological descriptors (e.g., growth rate, lag phase, and
acidification rate) from such complex data sets, raw data have
to be compiled, noise in the measurements must be eliminated,
and the results must be introduced into appropriate models.
There are a large number of techniques available to formulate
such models, each varying in complexity and ease of develop-
ment from the others. The choice of a particular type of model
generally depends on the existing amount of a priori knowledge
about the system to be modeled. This includes linear models
(e.g., multiple linear regression) (21, 53), nonlinear models
(e.g., artificial neural networks) (31, 32, 53), statistical tech-
niques (e.g., principal component analysis) (14, 31, 32), and
artificial intelligence-based approaches (e.g., knowledge-based
systems) (31). However, the problem of finding the most ap-
propriate model that best fits the data, which requires a priori
information on the bioprocess, thereby limits its applicability
for routine and automatic detection of physiological descrip-
tors.

In this study, we describe a simple, high-throughput, robust
workflow for multiplex monitoring of both pH and oxygen
using fluorescence and biomass via absorbance and for mining
resulting online parameters in small-scale processes. The ap-
proach is flexible with regard to the user choice of probes,
plate, detection mode, and data analysis. It consists of 3 steps.
First, water-soluble pH and oxygen dyes are used as the basis
of a simple mix-and-measure assay to record in parallel both
oxygen consumption and extracellular acidification or basifica-
tion in addition to growth. Second, a numerical method is
applied to smooth the online data and to extract the physio-
logical descriptors. Third, statistical analysis of the resulting
physiological descriptors is used to discriminate distinct phys-
iological patterns and cluster the data into meaningful groups.

General performance evaluation of this approach is presented
and followed by an illustration of how this workflow may be
used in the examination of the physiological response of Esch-
erichia coli to environmental and genetic perturbations.

MATERIALS AND METHODS

Bacterial strains and cultivation media. The K-12 Escherichia coli strains
MG1655 and BW25113 and 94 single-gene knockout (KO) mutants from the
KEIO collection (4) were used in this study. All E. coli strains were grown on
minimal synthetic medium containing 48 mM Na2HPO4, 22 mM KH2PO4, 9 mM
NaCl, 19 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2, 0.1 g/liter of thiamine, and
2.5 g/liter of carbon source. In this study, D-cellobiose, D-glucose, D-xylose,
D-mannose, L- and D-arabinose, L-rhamnose, L-fucose, D-galacturonic acid, D-
glucuronic acid, D-sorbitol, dulcitol, arbutin, D-salicin, D-psicose, and D-allose
were used as carbon sources and were obtained from Sigma-Aldrich, France.
Magnesium sulfate and calcium chloride were autoclaved separately. Carbon
sources and thiamine were sterilized by filtration.

Measurement device. Cells were cultivated in a FLUOstar Optima plate
reader (BMG Labtech, Offenburg, Germany) at 37°C and 600 rpm (orbital) with
a shaking diameter of 1 mm. The shaking and measurement procedures were as
follows: shake duration, 300 s; fluorescent measurement duration, 123 s per 48
wells, 20 flashes; shaking duration, 60 s; absorbance measurement duration, 50 s
per 48 wells, 20 flashes; 180 cycles, 24 h, flash. Biomass was determined by
measurement of optical density (OD) at 600 nm. The experiments were carried
out with standard round 96- or 48-well plates with flat bottoms from Starlab,
France (catalog number 1830048), covered with lids. If not otherwise specified,
the experiments were conducted with a 500-�l working volume of medium.

Measurement of pH. The pH was measured by adding a sterile solution of
BCECF [2�,7�-bis-(2-carboxyethyl)-5-(and -6)-carboxyfluorescein; catalog num-
ber C3411; Sigma-Aldrich, France] to synthetic medium before inoculation with
cells. The soluble fluorescent pH indicator was applied in a final concentration of
2 �M in the fermentation medium. This indicator was excited with a wavelength
of 450 nm and 485 nm, and the emission was detected for both excitation
wavelengths at 540 nm. The pH values were derived from a calibration curve
generated with buffers containing BCECF at the same concentration (i.e., 2 �M)
as that in the culture medium. Buffers ranging from pH 4.0 to 9.0 were applied
to calibrate the measurement device. For each buffer condition, the intensity
ratio IR was calculated as follows: IR � (Iem540 nm � ex485 nm)/(Iem540
nm � ex450 nm). After determining IR for the different buffers, IR is plotted versus
pH. The resulting sigmoidal curve is fitted by using the Boltzmann equation (3):
pH � pHo � dpH � ln [(IRmin � IR)/(IR � IRmax)], where pHo is the point of
inflection and therefore matches the pKa value; IR is the measured intensity;
IRmin and IRmax are the minimal and maximal values of the sigmoidal curve,
respectively; and dpH is the slope at the point of inflection. The calibration
parameters pHo, dpH, IRmin, and IRmax were calculated using Sigmaplot software
(SPSS Inc.).

Measurement of the oxygen partial pressure (pO2). Oxygen partial pressure
(pO2) in percent air saturation was measured by adding a sterile solution
of RuII(bpy)3 [Tris(2,2�-bipyridyl)dichlororuthenium(II) hexahydrate; catalog
number 224758; Sigma-Aldrich, France] to synthetic medium before inoculation
with cells. The soluble fluorescent oxygen indicator was applied at a final con-
centration of 20 �M in the cultivation medium and measured with an excitation
filter of 450 nm and an emission filter of 600 nm. The oxygen measurements were
calibrated with solutions containing RuII(bpy)3 at the same concentration (i.e.,
20 �M) as that in the culture medium. Doubly distilled water was used for the
calibration value of 100% air saturation, and a solution of 1% sodium sulfite was
used for 0% air saturation.

The oxygen values were correlated with a rearranged Stern-Volmer equation
(40) as follows:

[O2]t

[O2]i
�

Io � It

It��Io

Ii
�� � 1

where Ii is the emission intensity at the initial oxygen concentration [O2]i, prior
to the reaction initiation (t � 0), in air- or oxygen-saturated solution; It is the
emission intensity at some intermediate time t, for which the oxygen concentra-
tion has decreased to [O2]t; and Io is the final emission intensity in the absence
of oxygen.

Assay validation. Selection of required dye concentrations was performed as
follows. Stock solutions of 100� RuII(bpy)3 and 200� BCECF were prepared in
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doubly distilled water. Various volumes of these stocks were added to wells
containing minimal synthetic medium (pH 7.0) to obtain the desired final dye
concentrations. Cells were added to the medium to obtain a final OD at 600 nm
of 1. The total volume of each well was 200 �l. Two replicates per dye concen-
tration were measured. The fluorescence emission at a particular dye concen-
tration was measured after 5 min of orbital shaking. For the pH assay, the
signal-to-noise ratio (S/N) was calculated by dividing the intensity ratio (IR) of
the pH-sensitive wavelength (490 nm) and the pH-insensitive wavelength (440
nm) by the IR of the medium with or without cells. For the oxygen assay, S/N was
calculated by dividing the fluorescence intensity at 450 nm of the dye by the
fluorescence intensity at 450 nm of the medium with or without cells.

For BCECF and Hydroplate (PreSens), the accuracy was determined by cal-
culating the difference between the measured mean of 8 wells per pH unit and
the corresponding pH measured for each condition with a Eutcher pH meter.
The repeatability was defined as relative standard deviation (RSD) of 8 wells per
pH unit measured during two consecutive days. The pH drift was estimated by
monitoring wells containing pH buffer solutions and 2 �M BCECF over 1 h. For
RuII(bpy)3 and Oxoplate (PreSens), the accuracy was determined by calculating
the difference between the average of 8 wells per condition (i.e., air-saturated
medium or air-saturated water or deoxygenated water) and the corresponding
pO2 of the solutions measured with a polarographic oxygen sensor (Metler
Toledo). Each solution was measured twice during two consecutive days. The
repeatability was defined as RSD of 8 wells per condition, measured during two
consecutive days. The oxygen drift was estimated by monitoring wells containing
either air-saturated medium or air-saturated water or deoxygenated water over
1 h. The fluorescence emissions were measured for 1 h with 1 min of orbital
shaking between each measurement. All data points were considered for calcu-
lations.

Analysis of glucose and acetate levels. Glucose and acetate concentrations
were determined by high-performance liquid chromatography (HPLC) using an
Agilent 1100 Series chromatograph (Santa Clara, CA). An Aminex HPX-87H
ion-exchange column (Bio-Rad, Hercules, CA) and a refractive index detector
(RI-101; Shodex, Munich, Germany) were used for separation and detection,
respectively. The column temperature was 48°C, and 5 mM H2SO4 was used as
a mobile phase at a flow rate of 0.5 ml/min.

Calculations of physiological descriptors. Physiological descriptors, i.e., the
maximum specific growth rate on the first substrate (�1) and on the second
substrate (�2), the oxygen consumption rate on the first substrate (RO2), the
acidification (RAc) and the basification (RBa) rates, the length of lag phase (LLP),
the length of the first growth phase (LEx1), the length of transition phase (LTP),
and the length of the second growth phase (LEx2), were calculated from the time
profiles of biomass, pH, and oxygen using a home-made program developed in R
(48). The first substrate corresponds to the carbon source provided at the be-
ginning of the cultivation, and the second substrate is the product (often acetate
but not always) produced from the first substrate and consumed only after
the first carbon source has been exhausted. The data were smoothed using simple
moving average methods as described in the Pastecs package, an R package
dedicated to time series analysis (27). Growth data were log transformed. To
estimate descriptors from each time profile, model-free spline fits were applied.
The model-free fit applies a smoothed cubic spline as implemented in the R
function smooth.spline. A spline is a piecewise-polynomial real function that
does not assume a simple functional relationship between the x and y variables
for the considered curve. Instead, the curve is represented as a superposition of
elementary functions, e.g., cubic spline here. For each type of profile (growth,
pH, and oxygen), the maximum slopes that provided a measure of �1 and RBa

and the minimum slopes that provide a measure of RO2 and RAc were estimated
from the spline fit by taking the maximum and the minimum, respectively, of the
numerical derivative with respect to time. Using the equation of the tangent of
the fitted curve at the maximum or minimum slope and the maximal or minimal
value of variable considered, starting and ending time points of each linear part
of the curves were extracted. Using these data, it was possible to calculate the
length of each phase. LLP and LEx1 were derived from the growth curve, while
LTP and LEx2 were derived from the pH curve. Within the interval corresponding
to the second growth, the slope was used to derive �2.

Z score calculation and hierarchical cluster analysis. The data set obtained
from the environmental perturbation experiment can be viewed as a matrix Xij

where indices i � 1, …M and j � 1, …Nrun across experimental conditions (i.e.,
environmental conditions) and the physiological descriptor dimensions, respec-
tively. In our experiment M � 19, that is 9 different carbon sources � 2 interplate
replicates � 1 additional interplate replicate for the glucose condition and n �
9 (i.e., 9 different carbon sources).

The Z score for each experiment was computed as follows: ZXij � (Xij �

�Xj)/�Xj. �Xj and �Xj are the mean and the standard deviation of the physiolog-
ical descriptor j across the M experiments, respectively.

The hierarchical cluster analysis on Z score values was performed using the
hclust function as described in the R Stats package (48). The Manhattan function
was used as distance metric, and Ward’s linkage was used as the clustering
algorithm.

RESULTS

pH assay design. The soluble fluorescent dye BCECF, one
of the most widely used fluorescent indicators for intracellular
pH, was chosen to monitor the extracellular pH. This dye
exhibits a pKa value of approximately 7 and is hydrophilic. The
dye is membrane impermeant unless an acid shock treatment is
applied to load BCECF within the cells (49). Although the
concentration of dye to use as an intracellular pH indicator is
known, no data were available for using BCECF as an extra-
cellular pH indicator. Hence, we determined the optimal
amount of dye to add in the medium to obtain adequate signal
intensity, for BCECF concentrations ranging from 0.5 to 10
�M (concentrations generally used in the literature) (Table 1).
For both conditions (i.e., with and without cells), use of 2 to 4
�M BCEF produced maximal signal-to-noise ratio (S/N), and
dye concentrations below or above these values resulted in
decreased S/N. Because BCECF has a pH-insensitive isos-
bestic point at about 440 nm that allows correction of pH
changes for differences in medium composition, no drastic
changes in S/N were observed between medium with cells and
that without cells. A BCECF concentration of 2 �M was thus
chosen for subsequent experiments. Next, the accuracy and
repeatability of the pH measurement were evaluated and com-
pared with data collected in a 96-well plate equipped with
optodes sensitive to pH (Hydroplate; PreSens) (Table 2). For
pHs between 5 and 8, BCECF showed accuracy comparable to,
and higher repeatability than, that of Hydroplate. In general,
the pH drifts measured for BCECF were lower than the ones
measured for the Hydroplate and fell within the accuracy of

TABLE 1. Changes of S/N as a function of BCECF concentrations
(varying from 0.5 to 10 �M) and Ru(II)(bpy)3 concentrations

(varying from 2.5 to 50 �M) with (final OD at 600 nm of 1)
or without cells in M9 medium at pH 7

Assay, dye, and
concn (�M)

S/Na

Without cells With cells

pH assay, BCECF
0.5 2.63 � 0.05 2.77 � 0.14
1 2.63 � 0.03 2.79 � 0.13
2 2.65 � 0.05 2.81 � 0.10
4 2.64 � 0.04 2.82 � 0.06
8 2.59 � 0.04 2.77 � 0.07
10 2.55 � 0.03 2.71 � 0.05

Oxygen assay, Ru(II)(bpy)3
2.5 21.7 � 7.2 6.3 � 1.0
5 31.1 � 10.7 8.0 � 1.4
10 54.5 � 19.2 14.2 � 2.4
20 94.7 � 32.5 25.2 � 3.9
40 148.3 � 52.2 43.6 � 6.9
50 169.0 � 60.3 51.3 � 8.1

a S/N was calculated by dividing the fluorescence signal of the dye by the
background fluorescence of the medium with or without cells. Values are aver-
ages � standard deviations of duplicates per condition.
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the BCECF sensor. Finally, the possible cytotoxic effect caused
by BCECF was examined by comparing growth of an E. coli
strain with 2 �M dye and its growth without the dye (data not
shown). It was found that such an amount of dye did not
significantly affect bacterial growth.

Oxygen assay design. The soluble fluorescent probe
RuII(bpy)3 was chosen for its potential for multiplexing with
the BCECF probe, thereby allowing dual parameter metabolic
analysis of extracellular pH and oxygen consumption. The
overlay spectra (data not shown) indicate that both probes may
be excited using a single excitation band (440 to 500), whereas
emission can be discriminated using appropriate filters. The
concentration of dye to add in the medium was selected for
RuII(bpy)3 concentrations varying from 2.5 to 50 �M (con-
centrations generally used in the literature) (Table 1). In con-
trast to BCECF, Ru(II)(bpy)3 does not possess an isosbestic
point, and S/N was strongly affected by the medium composi-
tion (i.e., cells and dye concentrations). While the fluorescence
level of Ru(II)(bpy)3 was constant for the same concentration,
the background fluorescence of the medium increased when
cells were added. This effect is likely due to biogenic fluoro-
phores such as proteins, coenzymes, and vitamins. However,
the fluorescence intensity that was specifically due to the dye
was 6 to 51 times above the background fluorescence signal
(Table 1), depending on the dye concentration. From these, a
RuII(bpy)3 concentration of 20 �M, which gives a good S/N,
was selected. In Table 3, the accuracy and repeatability of the
oxygen measurements were evaluated and compared with a
96-well plate equipped with oxygen-sensitive optodes (Oxo-
plate; PreSens). Compared with Oxoplate, RuII(bpy)3 showed
comparable accuracy and lower repeatability. However, these
data are acceptable for most screening applications, especially
when working with synthetic minimal medium, for which good
accuracy and repeatability were observed. The oxygen drifts
measured in water solutions were higher than the ones ob-
tained with the Oxoplate, but they were largely lower for syn-

thetic minimal medium. The cytotoxicity and cell permeability
of RuII(bpy)3 were also tested for the selected concentration.
Growth of E. coli cells was not significantly affected upon
cultivation with 20 �M RuII(bpy)3, demonstrating the absence
of toxicity of the fluorescent dye (data not shown). Penetration
of RuII complex through cell membrane was investigated by
incubating E. coli cells with RuII(bpy)3 under standard growth
conditions. As shown in Table 4, most of the RuII(bpy)3 was
detected in the supernatant (extracellular) after centrifugation
of the cell suspension and only a negligible percentage (below
1%) was found in the cells. This was likely due to nonspecific
fluorescence since similar results were obtained when no
RuII(bpy)3 was added in the medium (Table 4). These data
indicated that RuII(bpy)3 is apparently not transported into
the cells and is not cytotoxic.

Multiplexing pH and oxygen assays to infer cellular metab-
olism. The spectral compatibility of both BCECF and
RuII(bpy)3 probes opens up the possibility of dual parametric
analysis of both pH and oxygen in a single well. In addition,
growth, as measured by absorbance, might not interfere with
the dual fluorescence signals of BCECF and RuII(bpy)3. Thus,
it should be possible to monitor pH, oxygen, and growth in
parallel. As a validation study, we tested the fluorescence-
based assay to examine E. coli MG1665 cells growing on glu-
cose. The behavior of E. coli under this condition is well
known, and typically, six phases can be observed (21). There is
a lag phase, followed by a first growth phase where cells use the
glucose and produce acetate. After glucose is depleted, cells
then switch to previously produced acetate (i.e., transition
phase) and start a second growth phase. To achieve this, E. coli
cells were grown in a 48-well plate and growth, pH, pO2,
glucose, and acetate levels were followed (Fig. 1). The results
showed that profiles of growth, substrate uptake, and product
formation were consistent with the expected behavior of E. coli
under the tested condition. Most importantly, each specific
phase of culture growth was nicely captured by the multiplex
measurement of pH, pO2, and growth. The high reproducibil-
ity of the technique was notable, with the relative standard

TABLE 2. Accuracy, repeatability, and drift per hour of pH assays
performed with BCECF and Hydroplate

pH of
buffer

solution

Accuracy (pH) Repeatability (RSDa) Drift (pH/h)

BCECF Hydroplate BCECF Hydroplate BCECF Hydroplate

3 0.11 0.08 1.86 15.01 0.16 0.23
4 0.51 0.08 0.46 1.75 0.02 0.03
5 0.06 0.06 0.24 0.50 0.02 0.05
6 0.05 0.05 0.24 0.33 0.00 0.03
7 0.00 0.04 0.29 0.38 0.04 0.03
8 0.10 0.08 0.65 1.07 0.00 0.16
9 0.34 0.29 1.48 2.80 0.04 0.11

a RSD, relative standard deviation (percent).

TABLE 3. Accuracy, repeatability, and drift per hour of oxygen assay performed with Ru(II)(bpy)3 and Oxoplate

Solution
Accuracy (% air saturation) Repeatability (% air saturation) Drift (% air saturation/h)

Ru(II)(bpy)3 Oxoplate Ru(II)(bpy)3 Oxoplate Ru(II)(bpy)3 Oxoplate

Air-saturated water 0.9 5.5 5.1 0.69 13.2 0.2
Deoxygenated water 3.5 0.0 2.1 0.08 5.6 0.3
Air-saturated medium 2.3 3.4 1.3 0.90 0.1 1.8

TABLE 4. Retention of RuII(bpy)3 in E. coli cells

RuII(bpy)3
concn (�M)

Relative fluorescence at 450 nm of cells
grown with RuII(bpy)3a

Extracellular Intracellular

20 99.3 0.7
0 99.0 1.0

a Data were corrected for the background fluorescence (signal) of the medium.
Before measurement, the cells were washed twice and resuspended in M9 me-
dium, pH 7.
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deviation for all data points being below 1% for pH assay and
below 5% for oxygen assay.

Extracting physiological descriptors from online measure-
ments. The above approach enables the user to monitor culti-
vations without taking samples. Depending on the format of
the plate used, a large number of data can be generated and
have to be processed and interpreted. To this end, we devel-
oped a numerical approach based on a cubic spline interpola-
tion of the 3 online parameter profiles, i.e., growth, pH, and
pO2. By using this approach, it was possible to automatically
extract the values of the nine following physiological descrip-
tors: �1 � 0.54 h�1, �2 � 0.051 h�1, RO2 � �30.7% air
saturation � h�1, RAc � �0.30 pH � h�1, RBa � 0.071 pH � h�1,
LLP � 2.14 h, LEx1 � 5.07 h, LTP � 1.17 h, and LEx2 � 3.87 h
(Fig. 2). Briefly, parameters �1, �2, RO2, RAc, and RBa were
numerically derived from the spline fitted curves (red solid
line) and used to calculate the equations of the tangents (red
dashed lines) of fitted curves. Based on these equations, online
profiles were segmented into different time intervals (vertical
black dashed line), which were used to extract LLP, LEx1, LTP,
and LEx2. The intervals were not fixed but were strictly data
dependent. Direct comparison of the numerical values ob-
tained for RAc, RBa, and RO2 with glucose consumption rate
and acetate production and consumption rates, respectively,
was not possible since the units were not comparable. How-
ever, the Pearson correlations between the relevant tangents

were equal to 1, indicating a strong linear relationship between
online and offline variables in terms of rates. Lengths of each
phase calculated using our approach are indicated in Fig. 2 and
correlated nicely with the cultivation phases discussed in Fig. 1.

Use of physiological descriptors to monitor the response of
E. coli to environmental perturbations. To prove the applica-
bility of the proposed workflow for investigating physiological
changes of biological systems to environmental challenges, the
response of E. coli grown on various carbon sources was as-
sessed. In total, we recorded the online profiles for more than
130 samples encompassing 16 carbon sources, 8 biological rep-
licates (i.e., 4 intraplate and 2 interplate), and relevant con-
trols. Before processing the data, intraplate replicates were
averaged and a set of 7 carbon sources was removed. This set
includes D-arabinose, D-cellobiose, arbutin, D-salicin, dulcitol,
D-psicose, and D-allose, i.e., all carbon sources for which no
significant growth was detected after 20 h of cultivation. These
results were in agreement with previously published data (16)
where no growth was reported for D-arabinose, D-cellobiose,
arbutin, D-salicin, and dulcitol and a weak growth was observed

FIG. 1. Online measurements of pO2, pH, and growth (OD at 600
nm) and offline measurements of glucose and acetate levels in E. coli
MG1655 cultivations. Cells were grown in a minimal synthetic medium
with 2.5 g/liter of glucose, 20 �M RuII(bpy)3, and 2 �M BCECF in a
48-well plate with 500 �l filling volume, at 37°C, with a 700-rpm
shaking frequency and a 1-mm shaking diameter. Averages and stan-
dard deviations of 4 replicates per condition are shown.

FIG. 2. Examples of fitting growth, oxygen, and pH curves. The
circles represent the smoothed data of optical densities, oxygen levels,
and pHs measured at successive time points. The spline fits are indi-
cated by the red solid line and were used to derive �1 and �2 (first and
second growth rates), RAc and RBa (acidification and basification
rates), and RO2 (oxygen consumption rate). The red dashed lines are
tangents to the fitted curves with a slope equal to alternatively �1, �2,
RAc, RBa, and RO2. The vertical dashed black lines indicate the starting
and ending points of the four time-related parameters LLP (length of
lag phase), LEx1 (length of the first growth phase), LTP (length of
transition phase), and LEx2 (length of the second growth phase).
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for D-psicose. In these experiments, growth was observed for
D-allose. In our case, the first phase of growth on D-allose
mostly escaped the screening window since it has been shown
that growth of E. coli on D-allose induced a long lag phase of
about 19 h (5). Physiological descriptors were extracted as
described above. In order to standardize physiological descrip-
tors on a unique scale across the wide range of experimental
conditions, the variables were transformed to zero mean and
unit variance using Z score calculation. To identify groups of
carbon sources that result in similarities or differences in phys-
iological states, the resulting collection of Z scores was used for
unsupervised hierarchical cluster analysis. Standardization
based on Z score calculation was applied before clustering to
equalize the data sets on the same scale and to ensure that the
clustering result was not dominated by one or a small number
of variables.

The results are presented in Fig. 3. As expected from the
high reproducibility of the method, interplate replicates clus-
tered together. In addition, carbon sources with similar phys-
iological effects showed similar Z score patterns and thereby
clustered together. The cluster analysis grouped together car-
bon sources that are metabolized through parallel pathways,
converge to the same products, and/or present regulatory cross
talk as illustrated for L-fucose with L-rhamnose (11) and for
D-glucuronic acid with D-galacturonic acid (44). Surprisingly,
the two PTS (phosphoenolpyruvate:carbohydrate phospho-

transferase system) substrates, D-sorbitol and D-mannose,
which are both metabolized into fructose-6-phosphate, exhib-
ited very different Z score profiles. While most of the Z scores
for physiological descriptors of cells growing on D-sorbitol fell
within the noise envelope, growth on D-mannose produced
strong changes. This is consistent with the finding of Betten-
brock and colleagues, who demonstrated that under extreme
environmental conditions such as growth on D-sorbitol, the
PTS regulation is most likely overridden by other global anti-
stress regulatory networks (6). The sugars showing behaviors
closest to that of D-glucose were the two non-PTS carbon
sources D-xylose and L-arabinose. Both sugars are metabolized
via xylulose 5-P and have a joint regulation (12). Although
their metabolic fate is different from that of D-glucose, the
physiological descriptors revealed glucose-like behavior. Little
is known about kinetic parameters of E. coli growing on D-
xylose or L-arabinose. One notable exception is the work of
Hernandez-Montalvo and coworkers, who previously observed
specific growth and sugar consumption rates that were similar
for D-glucose and D-arabinose and lower for D-xylose (23).

Use of physiological descriptors to monitor response of E.
coli to genetic perturbations. The Keio collection, which en-
compasses 3,985 single-gene deletion mutants, provides a bio-
logical resource for testing mutational effects (4). Reliable,
rapid, and high-volume processing systems are required to
screen such a library. For this reason, we probed our method as

FIG. 3. Clusterogram of Z score profiles of physiological descriptors obtained for E. coli cells growing on various carbon sources. The 19
samples were grouped into 5 clusters based on their Z score profiles. The cluster tree is shown on the left, and the Z score profiles are shown on
the right. The Manhattan function was used as distance metric, and Ward’s linkage was used as clustering algorithm. The Z score profile of each
individual condition in the cluster is depicted by black lines; the mean Z score profile is marked in dashed black for each cluster, and the gray
shading indicates scores that fall within the noise envelope (�0.5 	 Z score 
 0.5). The plus or minus sign of Z scores indicates the direction of
the effect.
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a high-throughput functional genomics screening method to
assess the consequence of gene deletion on E. coli glucose
metabolism. Since our screen was focused on central metabo-
lism, 94 single-gene knockout (KO) mutants with roles in me-
tabolism were selected from the Keio collection. Three-quar-
ters of these strains had disruptions of metabolic genes
involved in carbohydrate, nucleotide, amino acid, lipid, and
energy metabolism. The remaining quarter included genes in-
volved in cellular processing and information storage. The
latter genes encode transcription and sigma factors known to
directly or indirectly control central metabolic enzymes (33).
Next, the contributions of these genes to growth rates (�1 and
�2); acidification and basification rates (RAc and RBa); oxygen
consumption rate (RO2); and lengths of lag, growth, and tran-
sition phases (LLP, LEx1, LTP, and LEx2) were profiled. For all
physiological descriptors, the fold change was calculated by
dividing the mutant value by the wild-type value and the ratio
was scaled to log2. In total, a matrix of 1,692 (94 single-gene
knockouts � 9 physiological descriptors � 2 interplate repli-
cates) biological measurements was generated.

To allow rapid visual comparison of phenotypes, the effect of
each gene was displayed as a function of the 9 physiological
descriptors in a heat plot as presented in Fig. 4. The reported
log2 fold changes correspond to the average of the two inde-
pendent experiments. Of the 94 tested genes, 55 exhibited
changes for at least one physiological descriptor. The greatest
fraction (i.e., 41 out of 61) of genes that impacted physiological
descriptors were metabolic genes. Changes were also detected
in 10 out of 24 transcription and sigma factors known to have
direct or indirect target genes that are involved in central
carbon metabolism. For instance, mutations in the sensor ki-
nase gene, barA, or the response regulator gene, uvrY, which is
needed for switching between glycolytic and gluconeogenic
carbon sources (45), affected the rate and the length of the
growth on the second substrate (�2 and LEx2) and the length of
the transition phase (LTP). In contrast, gnltR, which negatively
regulates the genes involved in the catabolism and uptake of
D-gluconate, did not show a difference from the wild type.
Except for cyaA, none of the transcription factors impacted
acidification rate (RAc) or oxygen consumption rate (RO2),
which is consistent with the previously published physiological
data obtained with the same mutants (22). In total, only 5 KO
strains (i.e., pstI, ppc, lpd, icd, and gltA mutants) did not grow
at all after 24 h, which nicely agrees with previously published
data (4). Among them, lpd and pstI may simply be slow grow-
ers, as their ODs after 48 h were substantially increased (4).
Four KO strains (i.e., pgi, pfkA, sucC, and sucB mutants) did
not show a second growth phase (i.e., no �2) either because of
both a slow growth on glucose and a long lag phase (i.e., pgi
and pfkA) or because of a long transition phase (i.e., sucC and
sucB). It has been shown that deletion of pgi and pfkA genes
encoding the phosphoglucose isomerase and the dominant
phosphofructokinase, respectively, impaired severely the spe-
cific growth and glucose consumption rates (18). For both
mutants, the second growth phase escaped our screening win-
dow since cultivations were followed for 24 h. Li and coworkers
showed that the deletion of sucC, one of the components of
the oxoglutarate dehydrogenase complex, produced a large
amount of acetate that is not utilized (39). This could also be
a valuable explanation of the behavior observed for the sucB

KO mutant. Finally, only 6 KO strains (i.e., cyaA, ptsG, pgi,
pfkA, aceF, and aceE mutants) had altered growth rates on
glucose (i.e., �1). The reduced growth rates of cyaA and ptsG
mutants, deficient in the glucose PTS system, might be ex-
plained by a lower glucose uptake rate (20, 46). This is consis-
tent with the low acidification rate (RAc), which indicates a low
acetate secretion rate. Both of the genes aceF and aceE are
components of the pyruvate dehydrogenase complex, which is
one of the major routes for pyruvate dissimilation in E. coli.
The altered growth on glucose observed for both mutants can
be explained by the inability to generate acetyl coenzyme A
(acetyl-CoA) directly from glucose, although they are able to
make it from acetate. A previous study has shown that an aceE
and an aceF mutant of E. coli will accumulate about 50%
pyruvate by mass from glucose (51a). Finally, apart from ptsG,
which showed a shorter growth phase on the second substrate,
no mutant exhibited physiological performance higher than
that of the wild type. Such behavior can be explained by a
reduced acetate production due to the limited capacity of the
glucose PTS system uptake (20). Inactivation of PTS compo-
nents has been successfully applied to increase production of
valuable by-products at the expense of acetate production (41).

DISCUSSION

Although multiwell plates are undoubtedly highly suitable
for high-throughput operation, they offer limited capabilities
for online measurement (e.g., pH and dissolved oxygen) due to
the lack of instrumentation. Here we present an assay based on
oxygen- and pH-sensitive fluorescent probes that allow parallel
measurement of pH, oxygen, and growth in a single well. Mul-
tiwell plates capable of parallel operation have been previously
reported, but such systems require dedicated instrumentation,
have limited throughput, or are not able to measure all param-
eters at once (7). The use of soluble fluorescent probes has
numerous advantages, which are that (i) the absorbance mea-
surement of growth is not impaired by the dual parametric
fluorescence measurement of pH and oxygen, (ii) only an or-
dinary fluorescence reader equipped with a shaker is required,
and (iii) the measurement flexibility and throughput are in-
creased. Here the method was tested with standard plates with
48 and 96 wells, but there are no impediments to using plates
with more (up to 1,536) or fewer (down to 6) wells. The low
concentrations of sensors needed and the simplicity and rapid-
ity in setting up the system provide a realistic and cost-effective
alternative to existing methods (7).

The offline measurement, i.e., the time course profiles of
substrate and product concentrations, represent a direct ap-
proach to assess the different cultivation phases and associated
rates. Although rich in information, offline samplings are time-
consuming and delicate operations in multiwell plates due to
the low cultivation volumes. In contrast, with the proposed
assay, online measurements are not invasive and are readily
available but do not provide direct physiological information.
Our data show that this physiological information is reflected
and can be captured in the online measurements when the
cultivation progresses from one state (phase) to another. We
also observed that this information was not readily apparent
from any single variable at any particular time but rather was
spread across all online variables over the different time inter-
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vals. The challenge was thus to develop a tool able to extract
this information in an automatic and rational manner. In this
study, we present a numerical approach based on a model-free
spline fitting to extract valuable information on the different
phases of culture growth solely from online profiles. We dem-
onstrate that this innovative technique was able to derive the
information in the form of distinct physiological descriptors.

This represents, to our knowledge, a highly valuable level of
information available from online time course profiles in
plates. Notably, because we used a model-free method, knowl-
edge of the underlying mathematical model is not required.
Hence, this approach can be applied to any online profiles
without a priori knowledge of the relationships between what is
measured online and what is happening inside the cells.

FIG. 4. Summary of effects detected in physiological descriptors in response to genetic perturbations. The color code indicates the log2 fold
change relative to the wild-type strain. Physiological descriptors showing a standard error greater than 35% are indicated in gray. Cells that did
not grow are indicated in white. Data represent the averages of 2 independent cultures per condition. Genes are sorted according to their cluster
of orthologous groups (COG) classification.
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The application of this method to infer metabolic responses
of E. coli was shown to work consistently for both environ-
mental and genetic perturbations. The environmental per-
turbation experiments illustrated that such a method was
reproducible, provided a concise summary of the patterns of
carbon source utilization, and allowed examination of rela-
tionships between substrates. The genetic perturbation ex-
periments showed that out of 60 metabolic genes, only 3
were lethal and 5 affected strongly the growth rate on glu-
cose. Consistent with previous work (29, 37, 42), these re-
sults highlight the robustness of E. coli metabolism despite
loss of a single enzyme in central carbon metabolism.
Thanks to physiological descriptors, we were able to reveal
not only the phenotype of silent mutations, in terms of
growth, but also the phenotype of gene deletion mutants not
directly involved in central metabolism (i.e., transcription
and sigma factors). Using metabolomics-based approaches,
it has been shown that silent mutations of yeast genes could
be revealed by intracellular metabolite analysis (47). In a
previous work, the extracellular medium has been used to
distinguish between different physiological states of wild-
type yeast and between yeast single-gene deletion mutants
(1). Although metabolomics can be applied in a multiwell
plate (15), measuring metabolites is time-consuming and
subject to technical difficulties, especially for intracellular
metabolites. Because of its speed, ease of use, and high
sample processing capacity, the method proposed here
could serve as a prescreening tool in metabolomics-based
approaches. Further, with the exception of the metabolic
regulator ptsG, no mutant exhibited physiological perfor-
mance higher than that of the wild type. This agrees with the
hypothesis that the wild-type E coli metabolic network rep-
resents an optimal metabolic state under the considered
experimental conditions (51). In addition to E. coli, this
optimal metabolic adaptation had also been observed in the
yeast Saccharomyces cerevisiae, where no mutants with im-
proved growth were detected (4, 19). Finally, noise and
robustness of the method were illustrated with genes that
are not induced under the tested conditions. Examples in-
clude gnltR (induced on D-gluconate) or prpc (induced on
propionate), which did not affect the physiological descrip-
tors.

In conclusion, we have here demonstrated that the proposed
approach enables us to reproducibly distinguish between dif-
ferent environmental growth conditions and between different
E. coli single-gene deletion mutants and establish the physio-
logical basis to explain differences. This strategy is a powerful
tool to generate more insights into the bioprocesses in an HT
and quantitative manner and might be used for screening ap-
plications such as media, strains, or drug optimization. This
method is complementary to other metabolic profiling ap-
proaches providing information on carbon source oxidation (8)
or on cellular bioenergetics (17). It is reasonable also that the
physiological information, brought by the methodology intro-
duced in this work, could be very useful to constrain, check,
and improve mathematical models as developed in the area of
systems biology. Overall, these results provide a solid proof-
of-principle for the presented workflow and suggest that there
is no obstacle to applying it to other kinds of cells or processes.
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